
Migrating Monolithic Applications to
Microservices with CARGO

IBM Research https://arxiv.org/abs/2207.11784

Vikram Nitin
Columbia University

Shubhi Asthana
IBM Research

Rahul Krishna
IBM Research

Baishakhi Ray
Columbia University

https://arxiv.org/abs/2207.11784

IBM Research

GitHub’s Slow March toward Monolithic Hell

2

2008
Github is created with a

monolithic Ruby on Rails
architecture

2016
Rails v3.2. Started

working on upgrade.

2018
Rails v5.2

1.5 years!

Why did it take that much
effort do a version upgrade?

IBM Research

Monolithic code can be problematic!

3

Rob Brigham,
senior manager at

Amazon AWS

Sha Ma,
VP of Software

Engineering at Github

1. https://www.infoq.com/presentations/github-rails-monolith-microservices/
2. https://thenewstack.io/led-amazon-microservices-architecture/

"...having everyone doing development in the
same monolithic code base is no longer the

most efficient and optimal way to scale
GitHub."

"... over time, as that project matures, as you
add more developers on it, as it grows ... that
monolith is going to add overhead into your

process, and that software development
lifecycle is going to begin to slow down."

https://www.infoq.com/presentations/github-rails-monolith-microservices/
https://thenewstack.io/led-amazon-microservices-architecture/

IBM Research

Problems with Monolithic Architecture

4
[1] Chris Richardson, "Microservice Patterns", 2018

Large, complex code
structure is difficult for
developers to comprehend

!

https://microservices.io/book

IBM Research 5
[1] Chris Richardson, "Microservice Patterns", 2018

Large, complex code
structure is difficult for
developers to comprehend

!

Development is slow because
build time and start up time
are high

!

Problems with Monolithic Architecture

https://microservices.io/book

IBM Research 6
[1] Chris Richardson, "Microservice Patterns", 2018

Large, complex code
structure is difficult for
developers to comprehend

!

!

Deploying into production is
a long process, so continuous
development is difficult

!

Problems with Monolithic Architecture

Development is slow because
build time and start up time
are high

https://microservices.io/book

IBM Research 7
[1] Chris Richardson, "Microservice Patterns", 2018

Large, complex code
structure is difficult for
developers to comprehend

!

!

Deploying into production is
a long process, so continuous
development is difficult

!

Scaling to higher workloads is
difficult!

Problems with Monolithic Architecture

Development is slow because
build time and start up time
are high

https://microservices.io/book

IBM Research 8
[1] Chris Richardson, "Microservice Patterns", 2018

Large, complex code
structure is difficult for
developers to comprehend

!

!

Deploying into production is
a long process, so continuous
development is difficult

!

Scaling to higher workloads is
difficult!
Locked into obsolete
technology stack. Difficult to
adopt new frameworks

!

Problems with Monolithic Architecture

Development is slow because
build time and start up time
are high

https://microservices.io/book

IBM Research

From Monoliths to Microservices

9

[1] Chris Richardson, "Microservice Patterns", 2018

https://microservices.io/book

IBM Research

The Microservice Architecture

10

Has code with single
functionality

Each microservice :

[1] Chris Richardson, "Microservice Patterns", 2018

https://microservices.io/book

IBM Research

The Microservice Architecture

11

Has code with single
functionality

Has a private database on
which it performs transactions

Each microservice :

[1] Chris Richardson, "Microservice Patterns", 2018

https://microservices.io/book

IBM Research

The Microservice Architecture

12

Has code with single
functionality

Has a private database on
which it performs transactions

Each microservice :

Communicates with the others
either asynchronously
(message bus, queues, etc.) or
synchronously (REST API,
gRPC, etc.)

[1] Chris Richardson, "Microservice Patterns", 2018

https://microservices.io/book

IBM Research

The Microservice Architecture

13

Has code with single
functionality

Has a private database on
which it performs transactions

Each microservice :

Communicates with the others
either asynchronously
(message bus, queues, etc.) or
synchronously (REST API,
gRPC, etc.)

Is highly cohesive and loosely
coupled with the other services

[1] Chris Richardson, "Microservice Patterns", 2018

https://microservices.io/book

IBM Research

Decomposing Monoliths into Microservices

14

This is a hard problem!

1. Identifying functional boundaries requires considerable
domain expertise

????

??

IBM Research

Decomposing Monoliths into Microservices

15

This is a hard problem!

1. Identifying functional boundaries requires considerable
domain expertise

2. Separating classes according to functionality is not
sufficient:

i. May lead to Concurrency issues

ii. Maintaining data consistency is challenging
????

??

IBM Research

Decomposing Monoliths into Microservices

16

This is a hard problem!

1. Identifying functional boundaries requires considerable
domain expertise

2. Separating classes according to functionality is not
sufficient:

i. May lead to Concurrency issues

ii. Maintaining data consistency is challenging
????

Automated monolith decomposition tools ..

??

IBM Research

Automated Monolith Decomposition

Industrial tools

[1] https://www.ibm.com/cloud/mono2micro
[2] https://www.konveyor.io
[3] https://vfunction.com

[1] Fritzsch, Jonas, et al. "From monolith to microservices: A
classification of refactoring approaches."

Active area of Research

https://www.ibm.com/cloud/mono2micro
https://www.konveyor.io
https://vfunction.com

IBM Research

Automated monolith decomposition tools

18

Monolithic
Application

IBM Research

Automated monolith decomposition tools

19

Monolithic
Application

Call / Control-
Flow Graph

Static and/or
Dynamic
Analysis

IBM Research

Automated monolith decomposition tools

20

Monolithic
Application

Call / Control-
Flow Graph

Automated
Microservice
Partitioning

Service 1 Service 2

Microservice
Recommendations

Static and/or
Dynamic
Analysis

IBM Research

The Problem
A real example from a benchmark application,

Daytrader. This is a portion of a call-graph, and there
is a call edge between the classes TradeDirect and

TradeConfig.

QuoteDatabean TradeDirect TradeConfig

IBM Research

The Problem

22

In this commonly recommended partitioning,
QuoteDatabean and TradeDirect lie in different

partitions.

QuoteDatabean 4���	#��´�

A B

TradeDirect

IBM Research

The Problem

23

But if we look beyond the call graph, we find this...

QuoteDatabean 4���	#��´�

A B

TradeDirect

#����%��	

(���%��	
4�����������%��	

TradeObject
SQLHandler

QuoteDB

IBM Research

QuoteDatabean 4���	#��´�

A B

TradeDirect

#����%��	

(���%��	
4�����������%��	

TradeObject
SQLHandler

QuoteDB

The Problem

Some challenges in implementing this partitioning scheme :

24

1. Distributed monolith : The two classes
QuoteDatabean and TradeConfig are
tightly coupled (access shared heap objects)

IBM Research

The Problem

Some challenges in implementing this partitioning scheme :

25

1. Distributed monolith : The two classes
QuoteDatabean and TradeConfig are
tightly coupled (access shared heap objects)

2. Distributed transaction : QuoteDatabean
and TradeConfig write to the same DB.

QuoteDatabean 4���	#��´�

A B

TradeDirect

#����%��	

(���%��	
4�����������%��	

TradeObject
SQLHandler

QuoteDB

IBM Research

QuoteDatabean 4���	#��´�

A B

TradeDirect

#����%��	

(���%��	
4�����������%��	

TradeObject
SQLHandler

QuoteDB

The Problem

26

In reality, QuoteDatabean and TradeDirect are tightly coupled!
Our algorithm, CARGO, groups them in the same partition

IBM Research

How do we get better partitions?
Our algorithm CARGO, uses the following key ideas :

1. More complete static analysis: Capture many types of dependencies between
classes and build a program dependency graph (PDG)

27

1

IBM Research

How do we get better partitions?
Our algorithm CARGO, uses the following key ideas :

1. More complete static analysis: Capture many types of dependencies between
classes and build a program dependency graph (PDG)

2. Explicitly model transactions: Database transactions are added as edges in the
PDG

28

1

2

IBM Research

How do we get better partitions?
Our algorithm CARGO, uses the following key ideas:

1. More complete static analysis: Capture many types of dependencies between
classes and build a program dependency graph (PDG)

2. Explicitly model transactions: Database transactions are added as edges in the
PDG.

3. Detect communities in the PDG: We present a novel community detection
algorithm to assign partitions to nodes in the PDG.

29

1

2

3

IBM Research

Our System - Step 1

30

Extract a Context-sensitive Program Dependency Graph

IBM Research

Context-Sensitivity

31

void main(Object[] args) {
 A a1 = new A();
 Object v1 = a1.foo(new Object());

 A a2 = new A();
 Object v2 = a2.foo(new Object());
}

1
2
3
4
5
6
7

1
2
3
4
5
6

class A {
 Object foo(Object v) {
 B b = new B();
 return b.bar(v);
 }
}

1
2
3
4
5
6

class B {
 Object bar(Object v) {

 . . .
 }
}

IBM Research

Context-Sensitivity

32

void main(Object[] args) {
 A a1 = new A();
 Object v1 = a1.foo(new Object());

 A a2 = new A();
 Object v2 = a2.foo(new Object());
}

1
2
3
4
5
6
7

1
2
3
4
5
6

class A {
 Object foo(Object v) {
 B b = new B();
 return b.bar(v);
 }
}

1
2
3
4
5
6

class B {
 Object bar(Object v) {
 . . .
 }
}

main()

Context-insensitive Analysis

main()

Context-sensitive Analysis

[Φ, Φ]

 // A/1

 // A/2

IBM Research

 // A/2

Context-Sensitivity

33

void main(Object[] args) {
 A a1 = new A();
 Object v1 = a1.foo(new Object());

 A a2 = new A();
 Object v2 = a2.foo(new Object());
}

1
2
3
4
5
6
7

1
2
3
4
5
6

class A {
 Object foo(Object v) {
 B b = new B();
 return b.bar(v);
 }
}

1
2
3
4
5
6

class B {
 Object bar(Object v) {
 . . .
 }
}

main()

A.foo()

Context-insensitive Analysis

main()

A.foo()
[Φ, A/1]

Context-sensitive Analysis

[Φ, Φ]

 // A/1

 // A/2

 // A/1

IBM Research

Context-Sensitivity

34

void main(Object[] args) {
 A a1 = new A();
 Object v1 = a1.foo(new Object());

 A a2 = new A();
 Object v2 = a2.foo(new Object());
}

1
2
3
4
5
6
7

1
2
3
4
5
6

class A {
 Object foo(Object v) {
 B b = new B();
 return b.bar(v);
 }
}

1
2
3
4
5
6

class B {
 Object bar(Object v) {
 . . .
 }
}

main()

A.foo()

Context-insensitive Analysis

main()

A.foo() A.foo()
[Φ, A/1] [Φ, A/2]

Context-sensitive Analysis

[Φ, Φ]

 // A/1

 // A/2

 // A/1

 // A/2

IBM Research

Context-Sensitivity

35

void main(Object[] args) {
 A a1 = new A();
 Object v1 = a1.foo(new Object());

 A a2 = new A();
 Object v2 = a2.foo(new Object());
}

1
2
3
4
5
6
7

1
2
3
4
5
6

class A {
 Object foo(Object v) {
 B b = new B();
 return b.bar(v);
 }
}

1
2
3
4
5
6

class B {
 Object bar(Object v) {
 . . .
 }
}

main()

A.foo()

B.bar()

Context-insensitive Analysis

main()

A.foo() A.foo()

B.bar()

[Φ, A/1] [Φ, A/2]

[A/1, B/1] [A/2, B/1]

Context-sensitive Analysis

B.bar()

[Φ, Φ]

 // A/1

 // A/2

 // B/1

IBM Research

Building a Program Dependency Graph

36

class DBHandler {
void read(Obj o1) {

int x;
SQL.read(“DB”, x);
o1.val = x;

}
void write(int x) {

SQL.write(“DB”, x);
}

}

1
2
3
4
5
6
7
8
9

10

class Main {
void main(String... args) {

Obj o1 = new Obj();
Obj o2 = new Obj();
DBHandler1.read(o1);
int x = o1.getVal();
DBHandler2.write(x);

}

1
2
3
4
5
6
7
8
9

IBM Research

Building a Program Dependency Graph

37

class DBHandler {
void read(Obj o1) {

int x;
SQL.read(“DB”, x);
o1.val = x;

}
void write(int x) {

SQL.write(“DB”, x);
}

}

1
2
3
4
5
6
7
8
9

10

class Main {
void main(String... args) {

Obj o1 = new Obj();
Obj o2 = new Obj();
DBHandler1.read(o1);
int x = o1.getVal();
DBHandler2.write(x);

}

1
2
3
4
5
6
7
8
9

Call-return dependency

IBM Research

Building a Program Dependency Graph

38

class DBHandler {
void read(Obj o1) {

int x;
SQL.read(“DB”, x);
o1.val = x;

}
void write(int x) {

SQL.write(“DB”, x);
}

}

1
2
3
4
5
6
7
8
9

10

class Main {
void main(String... args) {

Obj o1 = new Obj();
Obj o2 = new Obj();
DBHandler1.read(o1);
int x = o1.getVal();
DBHandler2.write(x);

}

1
2
3
4
5
6
7
8
9

Call-return dependency
Dataflow dependency

IBM Research

Building a Program Dependency Graph

39

class DBHandler {
void read(Obj o1) {

int x;
SQL.read(“DB”, x);
o1.val = x;

}
void write(int x) {

SQL.write(“DB”, x);
}

}

1
2
3
4
5
6
7
8
9

10

class Main {
void main(String... args) {

Obj o1 = new Obj();
Obj o2 = new Obj();
DBHandler1.read(o1);
int x = o1.getVal();
DBHandler2.write(x);

}

1
2
3
4
5
6
7
8
9

Call-return dependency
Dataflow dependency
Heap dependency

IBM Research

Building a Program Dependency Graph

40

class DBHandler {
void read(Obj o1) {

int x;
SQL.read(“DB”, x);
o1.val = x;

}
void write(int x) {

SQL.write(“DB”, x);
}

}

1
2
3
4
5
6
7
8
9

10

class Main {
void main(String... args) {

Obj o1 = new Obj();
Obj o2 = new Obj();
DBHandler1.read(o1);
int x = o1.getVal();
DBHandler2.write(x);

}

1
2
3
4
5
6
7
8
9

Call-return dependency
Dataflow dependency
Heap dependency

IBM Research

Building a Program Dependency Graph

41

class DBHandler {
void read(Obj o1) {

int x;
SQL.read(“DB”, x);
o1.val = x;

}
void write(int x) {

SQL.write(“DB”, x);
}

}

1
2
3
4
5
6
7
8
9

10

class Main {
void main(String... args) {

Obj o1 = new Obj();
Obj o2 = new Obj();
DBHandler1.read(o1);
int x = o1.getVal();
DBHandler2.write(x);

}

1
2
3
4
5
6
7
8
9

Call-return dependency
Dataflow dependency
Heap dependency

[Main, DBHandler/1]

[Main, DBHandler/1]

[Main, DBHandler/2]

[Main, DBHandler/1]

[Main, DBHandler/2]

[Φ, Main]

IBM Research

Our System - Step 2

42

Context Snapshots

IBM Research

Context-sensitive Analysis

43

void main(Object[] args) {
 A a1 = new A();
 Object v1 = a1.foo(new Object());

 A a2 = new A();
 Object v2 = a2.foo(new Object());
}

1
2
3
4
5
6
7

1
2
3
4
5
6

class A {
 Object foo(Object v) {
 B b = new B();
 return b.bar(v);
 }
}

1
2
3
4
5
6

class B {
 Object bar(Object v) {
 . . .
 }
}

main()

A.foo() A.foo()

B.bar()

[Φ, A/1] [Φ, A/2]

[A/1, B/1] [A/2, B/1]

Context-sensitive Analysis

B.bar()

[Φ, Φ]

IBM Research

Context Snapshots

44

The context-sensitive PDG is a
superposition of all possible
contexts.

At any time, A.foo() and
B.bar() can exist in any one
context but not both
simultaneously.

main()

A.foo() A.foo()

B.bar()

[Φ, A/1] [Φ, A/2]

[A/1, B/1] [A/2, B/1]

B.bar()

[Φ, Φ]

IBM Research 45

main()

A.foo() A.foo()

B.bar()

[Φ, A/1] [Φ, A/2]

[A/1, B/1] [A/2, B/1]

B.bar()

[Φ, Φ]

main()

A.foo() A.foo()

B.bar()

[Φ, A/1] [Φ, A/2]

[A/1, B/1] [A/2, B/1]
B.bar()

[Φ, Φ]

main()

A.foo() A.foo()

B.bar()

[Φ, A/1] [Φ, A/2]

[A/1, B/1] [A/2, B/1]
B.bar()

[Φ, Φ]

Context Snapshots
1

2

n

IBM Research 46

Transactional Snapshot

Class 1 Class 2

Database 1

Class 3
Class 5

Class 7 Class 6

Database 2

Class 1 Class 2

Database 1

Class 3
Class 5

Class 7 Class 6

Database 2

46

Transactional

Snapshots

IBM Research

Our System - Step 3

47

Label propagation is an algorithm to detect
communities of nodes in a graph

Context-sensitive Label Propagation

IBM Research

Label Propagation Algorithm

48

Initial State We start with some initial assignment of labels to nodes

Magenta and Blue are the two categories of label

IBM Research

Label Propagation Algorithm

49

Initial State We start with some initial assignment of labels to nodes

Magenta and Blue are the two categories of label

a) Random (unsupervised)

b) From the output of another algorithm (semi-supervised)

IBM Research

Label Propagation Algorithm

50

Pass 1 Each node is assigned the majority label of its neighbors

IBM Research

Label Propagation Algorithm

51

Final Repeat until convergence (no more node updates)

IBM Research

Context-sensitive Label Propagation

52

LPA

LPA LPA LPA…

…

Label Propagation on
Transactional Snapshot Label Propagation on

Context Snapshots

IBM Research

Context-sensitive Label Propagation

53

LPA

LPA LPA LPA…

…

Label Propagation on
Transactional Snapshot Label Propagation on

Context Snapshots

IBM Research 54

Context-sensitive Label Propagation

Initialize labels

IBM Research 55

Context-sensitive Label Propagation

Transactional Snapshot

IBM Research

Context-sensitive Label Propagation

Propagate Labels

IBM Research 57

Context-sensitive Label Propagation

Context Snapshot 1

IBM Research 58

Context-sensitive Label Propagation

Propagate Labels

IBM Research 59

Context-sensitive Label Propagation

Context Snapshot 2

IBM Research 60

Context-sensitive Label Propagation

Propagate Labels

IBM Research 61

Context-sensitive Label Propagation

And so on for all context snapshots

IBM Research

Our System - Overview

62

IBM Research

Our System - Overview

63

IBM Research

Our System - Overview

64

LPA

LPA LPA LPA…

…

IBM Research

Evaluation Setup - Benchmark Applications

65

Application Description Java Framework # Classes # SQL
Tables

Daytrader Trading application Java EE 8, Websphere 109 6

Plants Online plant shopping Java EE 7, Websphere 33 .

AcmeAir Website of a fictitious airline Openliberty,
Websphere eXtreme

66 .

JPetStore Online pet supply store Spring, Springboot 37 .

Proprietary1 Proprietary app . 82 .

IBM Research

Evaluation Setup - Benchmark Applications

66

Application Description Java Framework # Classes # SQL
Tables

Daytrader Trading application Java EE 8, Websphere 109 6

Plants Online plant shopping Java EE 7, Websphere 33 .

AcmeAir Website of a fictitious airline Openliberty,
Websphere eXtreme

66 .

JPetStore Online pet supply store Spring, Springboot 37 .

Proprietary1 Proprietary app . 82 .

IBM Research

Evaluation Setup - Benchmark Applications

67

Application Description Java Framework # Classes # SQL
Tables

Daytrader Trading application Java EE 8, Websphere 109 6

Plants Online plant shopping Java EE 7, Websphere 33 .

AcmeAir Website of a fictitious airline Openliberty,
Websphere eXtreme

66 .

JPetStore Online pet supply store Spring, Springboot 37 .

Proprietary1 Proprietary app . 82 .

IBM Research

Evaluation Setup - Benchmark Applications

68

Application Description Java Framework # Classes # SQL
Tables

Daytrader Trading application Java EE 8, Websphere 109 6

Plants Online plant shopping Java EE 7, Websphere 33 .

AcmeAir Website of a fictitious airline Openliberty,
Websphere eXtreme

66 .

JPetStore Online pet supply store Spring, Springboot 37 .

Proprietary1 Proprietary app . 82 .

IBM Research

Evaluation Setup - Baseline Approaches

69

Approach Summary

Mono2Micro* Dynamic call traces and hierarchical clustering.

CoGCN A Graph Neural Network and K-Means on a static call graph

FoSCI Genetic Search-based algorithm on dynamic execution traces

MEM A Minimum-Spanning Tree based Clustering Algorithm on a graph.
Edit-history and semantics are used to define coupling

* Enterprise scale decomposition tool

IBM Research

Evaluation Setup - “refining” partitions

70

Original Approach Refined with CARGO

Mono2Micro Mono2Micro++

CoGCN CoGCN++

FoSCI FoSCI++

MEM MEM++

CARGO can be used to refine the
partitions produced by other
approaches.

Denoted by “++” suffix.

E.g., Mono2Micro++ denotes
running CARGO with initial
partition labels produced by
Mono2Micro.

IBM Research

Research Questions

71

RQ-1 Effectiveness in remediating distributed transactions

 RQ-2 Latency and Throughput improvements resulting from
refined microservice partitions

RQ-3 Quality of microservice partition architectural metrics

IBM Research

Research Questions

72

RQ-1 Effectiveness in remediating distributed transactions

 RQ-2 Latency and Throughput improvements resulting from
refined microservice partitions

RQ-3 Quality of microservice partition architectural metrics

IBM Research

RQ-1 Distributed database transactions

73

To minimize distributed transactions, we would like, to the extent possible, for
each database table to be accessed from one microservice partition only

IBM Research

RQ-1 Distributed database transactions

74

Evaluation
Use Transactional Purity (TXP) to measure the tendency of a database table to be
accessed by multiple microservices

To minimize distributed transactions, we would like, to the extent possible, for
each database table to be accessed from one microservice partition only

IBM Research

Use Transactional Purity (TXP) to measure the tendency of a database table to be
accessed by multiple microservices

RQ-1 Distributed database transactions

75

TXP = 1 −
K

∑
i=0

pi ⋅ log [1
pi]

Evaluation

To minimize distributed transactions, we would like, to the extent possible, for
each database table to be accessed from one microservice partition only

IBM Research

Use Transactional Purity (TXP) to measure the tendency of a database table to be
accessed by multiple microservices

RQ-1 Distributed database transactions

76

Lower purity indicates accesses from more microservices
Higher purity indicates accesses from less microservices

TXP = 1 −
K

∑
i=0

pi ⋅ log [1
pi]

Entropy

Evaluation

To minimize distributed transactions, we would like, to the extent possible, for
each database table to be accessed from one microservice partition only

IBM Research

RQ-1 Distributed database transactions

77

• For each of the 4 baselines, the refined
partitions have higher transactional purity.

• FoSCI++ and MEM++ have transactional
purity of 1.0, (i.e., no distributed
transactions after repartitioning).

• CARGO (unsupervised) natively achieves
transactional purity of 1.0

Summary
m

2m

m
2m

++

co
gc

n

co
gc

n+
+

Fo
SC

I

Fo
SC

I+
+

M
EM

CA
RG

O

M
EM

++
0

0.2

0.4

0.6

1.0

0.8

Daytrader

++ implies refinement with CARGO

IBM Research

Research Questions

78

RQ-1 Effectiveness in remediating distributed transactions

 RQ-2 Latency and Throughput improvements resulting from
refined microservice partitions

RQ-3 Quality of microservice partition architectural metrics

IBM Research

RQ-2 Runtime Performance Improvements

79

Evaluation

Deploy two variants of the applications:
1. Application with original partitioning (Mono2Micro) 1
2. Application with partitions refined with CARGO (aka. Mono2Micro++) 2

Minimizing distributed transactions can offer significant runtime benefits in
terms of reduced latency and improved throughput.

1 https://github.com/vikramnitin9/tackle-data-gravity-insights/tree/main/RQ2/daytrader_apps/daytrader_cargo
2 https://github.com/vikramnitin9/tackle-data-gravity-insights/tree/main/RQ2/daytrader_apps/daytrader_mono2micro

https://github.com/vikramnitin9/tackle-data-gravity-insights/tree/main/RQ2/daytrader_apps/daytrader_cargo
https://github.com/vikramnitin9/tackle-data-gravity-insights/tree/main/RQ2/daytrader_apps/daytrader_mono2micro

IBM Research

RQ-2 Runtime Performance Improvements

80

Evaluation

Deploy two variants of the applications:
1. Application with original partitioning (Mono2Micro) 1
2. Application with partitions refined with CARGO (aka. Mono2Micro++) 2

Compare two runtime performance metrics:
 Latency: Time between reception and completion of a request (milliseconds)
Throughput: Number of successful requests honored per unit time (requests/second)

Minimizing distributed transactions can offer significant runtime benefits in
terms of reduced latency and improved throughput.

1 https://github.com/vikramnitin9/tackle-data-gravity-insights/tree/main/RQ2/daytrader_apps/daytrader_cargo
2 https://github.com/vikramnitin9/tackle-data-gravity-insights/tree/main/RQ2/daytrader_apps/daytrader_mono2micro

https://github.com/vikramnitin9/tackle-data-gravity-insights/tree/main/RQ2/daytrader_apps/daytrader_cargo
https://github.com/vikramnitin9/tackle-data-gravity-insights/tree/main/RQ2/daytrader_apps/daytrader_mono2micro

IBM Research

RQ-2 Runtime Performance Improvements

81

La
te

nc
y

Quotes Home Portfolio

Mono2Micro Mono2Micro++

Account Buy Logout

Users Users Users Users Users Users Users Users

Update
0��´�	

Register
Page

50

100

50

100

25

50

75

10

20
50

100

50

100

50

100 200

Th
ro

ug
hp

ut

0

IBM Research

RQ-2 Runtime Performance Improvements

82

Significant improvements in latency and throughput. Repartitioned application has 11% lower latency
and 120% higher throughput on average across use cases compare to the original applications.

La
te

nc
y

Quotes Home Portfolio

Mono2Micro Mono2Micro++

Account Buy Logout

Users Users Users Users Users Users Users Users

Update
0��´�	

Register
Page

50

100

50

100

25

50

75

10

20
50

100

50

100

50

100 200

Th
ro

ug
hp

ut

0

IBM Research

Research Questions

83

RQ-1 Effectiveness in remediating distributed transactions

 RQ-2 Latency and Throughput improvements resulting from
refined microservice partitions

RQ-3 Quality of microservice partition architectural metrics

IBM Research

RQ-3 Partitions and their Architectural Quality

84

METRIC DESCRIPTION

Coupling ▽ Average Coupling among partitions

Cohesion △ Average cohesion within a partition

BCP ▽ Purity of Business use cases per partition.

ICP ▽ Inter-partition call volume

▽ Lower is better △ Higher is better

IBM Research

RQ-3 Partitions and their Architectural Quality

85

MONO2MICRO MONO2MICRO++ CARGO

DAYTRADER 0.78 0.02 0.01

PLANTS 0.31 0.04 0.05

ACMEAIR 0.58 0.04 0.03

JPETSTORE 0.77 0.03 0.03

PROPRIETARY 0.42 0.03 0.04

WIN/TIE/LOSS 5/0/0

COGCN COGCN++ CARGO

DAYTRADER 0.37 0.61 0.71

PLANTS 0.39 0.46 0.6*

ACMEAIR 0.21 0.32 0.96

JPETSTORE 0.20 0.24 0.94

PROPRIETARY 0.69 0.73 0.75*

WIN/TIE/LOSS 5/0/0

*Mono2Micro++ performs
slightly better than CARGO

Coupling ▽ Cohesion △

CARGO improves the partitioning quality (reduced coupling and increased
cohesion) of other approaches and works equally well in unsupervised mode.

IBM Research

RQ-3 Partitions and their Architectural Quality

86

MONO2MICRO MONO2MICRO++ CARGO

DAYTRADER 2.31 2.57 1.31

PLANTS 1.68 2.20 1.79

ACMEAIR 1.29 1.48 1.75

JPETSTORE 2.25 2.35 2.87

PROPRIETARY 1.53 1.23 1.55

WIN/TIE/LOSS 0/0/5

BCP ▽

CARGO performs poorly on BCP. The definition of BCP depends heavily on the quality of the generated
business use cases, which Mono2Micro has access to but we do not.

IBM Research

Summary

1. Partitioning monolithic code can be challenging

87

1

IBM Research

Summary

1. Partitioning monolithic code can be challenging

2. Existing automated approaches miss key code and/or transactional dependencies

88

1

2

IBM Research

Summary

1. Partitioning monolithic code can be challenging

2. Existing automated approaches miss key code and/or transactional dependencies

3. We present CARGO, which uses (a) precise static analysis, (b) explicit modeling of
database transactions, and (c) a novel community detection algorithm

89

1

2

3

IBM Research

Summary

1. Partitioning monolithic code can be challenging

2. Existing automated approaches miss key code and/or transactional dependencies

3. We present CARGO, which uses (a) precise static analysis, (b) explicit modeling of
database transactions, and (c) a novel community detection algorithm

4. Compared to existing approaches, CARGO (a) reduces distributed transactions,
(b) achieves better latency and throughput, (c) achieves better performance on
architectural metrics

90

1

2

3

4

IBM Research

Future Directions

• Sometimes, it is not possible to avoid distributed transactions. In that case,
we need mechanism to automatically refactor database transactions into
distributed patterns like SAGA.

• Once we identify partitions, there is still a lot of work to implement these
partitions.

• Identify best mechanism for Inter-Process Communication (IPC), e.g., sync
vs async

• Automatically generate IPC code

91

IBM Research

Thank You!

92

https://arxiv.org/abs/2207.11784

https://arxiv.org/abs/2207.11784

