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GitHub’s Slow March toward Monolithic Hell

2

2008 
Github is created with a 

monolithic Ruby on Rails 
architecture

2016 
Rails v3.2. Started 

working on upgrade.

2018 
Rails v5.2

1.5 years!

Why did it take that much 
effort do a version upgrade?
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Monolithic code can be problematic!

3

Rob Brigham,  
senior manager at  

Amazon AWS

Sha Ma,  
VP of Software 

Engineering at Github

1. https://www.infoq.com/presentations/github-rails-monolith-microservices/ 
2. https://thenewstack.io/led-amazon-microservices-architecture/ 

"...having everyone doing development in the 
same monolithic code base is no longer the 

most efficient and optimal way to scale 
GitHub."

"... over time, as that project matures, as you 
add more developers on it, as it grows ... that 
monolith is going to add overhead into your 

process, and that software development 
lifecycle is going to begin to slow down."

https://www.infoq.com/presentations/github-rails-monolith-microservices/
https://thenewstack.io/led-amazon-microservices-architecture/


IBM Research

Problems with Monolithic Architecture 

4
[1] Chris Richardson, "Microservice Patterns", 2018

Large, complex code 
structure is difficult for 
developers to comprehend

!

https://microservices.io/book
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Development is slow because 
build time and start up time 
are high

!

Problems with Monolithic Architecture 
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development is difficult
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[1] Chris Richardson, "Microservice Patterns", 2018

Large, complex code 
structure is difficult for 
developers to comprehend

!

!

Deploying into production is 
a long process, so continuous 
development is difficult

!

Scaling to higher workloads is 
difficult!
Locked into obsolete 
technology stack. Difficult to 
adopt new frameworks

!

Problems with Monolithic Architecture 

Development is slow because 
build time and start up time 
are high

https://microservices.io/book
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From Monoliths to Microservices

9

[1] Chris Richardson, "Microservice Patterns", 2018

https://microservices.io/book
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The Microservice Architecture

10

Has code with single 
functionality

Each microservice :

[1] Chris Richardson, "Microservice Patterns", 2018

https://microservices.io/book
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The Microservice Architecture
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Has code with single 
functionality

Has a private database on 
which it performs transactions

Each microservice :

[1] Chris Richardson, "Microservice Patterns", 2018

https://microservices.io/book
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The Microservice Architecture

12

Has code with single 
functionality

Has a private database on 
which it performs transactions

Each microservice :

Communicates with the others 
either asynchronously 
(message bus, queues, etc.) or 
synchronously (REST API, 
gRPC, etc.)

[1] Chris Richardson, "Microservice Patterns", 2018

https://microservices.io/book
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The Microservice Architecture

13

Has code with single 
functionality

Has a private database on 
which it performs transactions

Each microservice :

Communicates with the others 
either asynchronously 
(message bus, queues, etc.) or 
synchronously (REST API, 
gRPC, etc.)

Is highly cohesive and loosely 
coupled with the other services

[1] Chris Richardson, "Microservice Patterns", 2018

https://microservices.io/book
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Decomposing Monoliths into Microservices

14

This is a hard problem! 

1.  Identifying functional boundaries requires considerable 
domain expertise

????

??
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Decomposing Monoliths into Microservices
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This is a hard problem! 

1.  Identifying functional boundaries requires considerable 
domain expertise 

2. Separating classes according to functionality is not 
sufficient: 

i. May lead to Concurrency issues 

ii. Maintaining data consistency is challenging 
????

??
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Decomposing Monoliths into Microservices

16

This is a hard problem! 

1.  Identifying functional boundaries requires considerable 
domain expertise 

2. Separating classes according to functionality is not 
sufficient: 

i. May lead to Concurrency issues 

ii. Maintaining data consistency is challenging 
????

Automated monolith decomposition tools ..  

??
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Automated Monolith Decomposition

Industrial tools

[1] https://www.ibm.com/cloud/mono2micro 
[2] https://www.konveyor.io 
[3] https://vfunction.com

[1] Fritzsch, Jonas, et al. "From monolith to microservices: A 
classification of refactoring approaches."

Active area of Research

https://www.ibm.com/cloud/mono2micro
https://www.konveyor.io
https://vfunction.com
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Automated monolith decomposition tools
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Monolithic 
Application
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Automated monolith decomposition tools

19

Monolithic 
Application

Call / Control-
Flow Graph

Static and/or 
Dynamic 
Analysis
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Automated monolith decomposition tools

20

Monolithic 
Application

Call / Control-
Flow Graph

Automated 
Microservice 
Partitioning

Service 1 Service 2

Microservice 
Recommendations

Static and/or 
Dynamic 
Analysis
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The Problem
A real example from a benchmark application, 

Daytrader. This is a portion of a call-graph, and there 
is a call edge between the classes TradeDirect and 

TradeConfig.

QuoteDatabean TradeDirect TradeConfig
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The Problem

22

In this commonly recommended partitioning, 
QuoteDatabean and TradeDirect lie in different 

partitions.

QuoteDatabean 4���	#��´�

A B

TradeDirect
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The Problem

23

But if we look beyond the call graph, we find this...

QuoteDatabean 4���	#��´�

A B

TradeDirect

#����%��	

(	���%��	
4�����������%��	

TradeObject
SQLHandler

QuoteDB
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QuoteDatabean 4���	#��´�

A B

TradeDirect

#����%��	

(	���%��	
4�����������%��	

TradeObject
SQLHandler

QuoteDB

The Problem

Some challenges in implementing this partitioning scheme :

24

1. Distributed monolith : The two classes 
QuoteDatabean and TradeConfig are 
tightly coupled (access shared heap objects)
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The Problem

Some challenges in implementing this partitioning scheme :

25

1. Distributed monolith : The two classes 
QuoteDatabean and TradeConfig are 
tightly coupled (access shared heap objects) 

2. Distributed transaction : QuoteDatabean 
and TradeConfig write to the same DB.

QuoteDatabean 4���	#��´�

A B

TradeDirect

#����%��	

(	���%��	
4�����������%��	

TradeObject
SQLHandler

QuoteDB
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QuoteDatabean 4���	#��´�

A B

TradeDirect

#����%��	

(	���%��	
4�����������%��	

TradeObject
SQLHandler

QuoteDB

The Problem

26

In reality, QuoteDatabean and TradeDirect are tightly coupled! 
Our algorithm, CARGO, groups them in the same partition
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How do we get better partitions?
Our algorithm CARGO, uses the following key ideas : 

1. More complete static analysis: Capture many types of dependencies between 
classes and build a program dependency graph (PDG)

27

1
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classes and build a program dependency graph (PDG) 

2. Explicitly model transactions: Database transactions are added as edges in the 
PDG

28

1

2
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How do we get better partitions?
Our algorithm CARGO, uses the following key ideas: 

1. More complete static analysis: Capture many types of dependencies between 
classes and build a program dependency graph (PDG) 

2. Explicitly model transactions: Database transactions are added as edges in the 
PDG. 

3. Detect communities in the PDG:  We present a novel community detection 
algorithm to assign partitions to nodes in the PDG.

29

1

2

3
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Our System - Step 1

30

Extract a Context-sensitive Program Dependency Graph
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Context-Sensitivity

31

void main(Object[] args) { 
  A a1 = new A(); 
  Object v1 = a1.foo(new Object()); 

  A a2 = new A(); 
  Object v2 = a2.foo(new Object()); 
}

1 
2 
3 
4 
5 
6 
7

1 
2 
3 
4 
5 
6

class A { 
  Object foo(Object v) { 
    B b = new B(); 
    return b.bar(v); 
  } 
}

1 
2 
3 
4 
5 
6

class B { 
  Object bar(Object v) { 

  . . . 
  } 
}



IBM Research

Context-Sensitivity
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void main(Object[] args) { 
  A a1 = new A();  
  Object v1 = a1.foo(new Object()); 

  A a2 = new A();  
  Object v2 = a2.foo(new Object()); 
}

1 
2 
3 
4 
5 
6 
7

1 
2 
3 
4 
5 
6

class A { 
  Object foo(Object v) { 
    B b = new B(); 
    return b.bar(v); 
  } 
}

1 
2 
3 
4 
5 
6

class B { 
  Object bar(Object v) { 
    . . . 
  } 
}

main()

Context-insensitive Analysis

main()

Context-sensitive Analysis

[Φ, Φ]

 // A/1

 // A/2
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 // A/2

Context-Sensitivity
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void main(Object[] args) { 
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main()
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 // A/2

 // A/1
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Context-Sensitivity

34
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  Object foo(Object v) { 
    B b = new B(); 
    return b.bar(v); 
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}
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2 
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}
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Context-Sensitivity
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Building a Program Dependency Graph

36

class DBHandler { 
void read(Obj o1) { 

int x; 
SQL.read(“DB”, x); 
o1.val = x; 

} 
void write(int x) { 

SQL.write(“DB”, x); 
} 

}

1 
2 
3 
4 
5 
6 
7 
8 
9 

10

 

class Main { 
void main(String... args) { 

Obj o1 = new Obj(); 
Obj o2 = new Obj(); 
DBHandler1.read(o1); 
int x = o1.getVal(); 
DBHandler2.write(x); 

}

1 
2 
3 
4 
5 
6 
7 
8 
9
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Building a Program Dependency Graph
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class DBHandler { 
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Building a Program Dependency Graph
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Building a Program Dependency Graph
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Building a Program Dependency Graph
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Building a Program Dependency Graph
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class DBHandler { 
void read(Obj o1) { 

int x; 
SQL.read(“DB”, x); 
o1.val = x; 

} 
void write(int x) { 

SQL.write(“DB”, x); 
} 

}

1 
2 
3 
4 
5 
6 
7 
8 
9 

10

 

class Main { 
void main(String... args) { 

Obj o1 = new Obj(); 
Obj o2 = new Obj(); 
DBHandler1.read(o1); 
int x = o1.getVal(); 
DBHandler2.write(x); 

}

1 
2 
3 
4 
5 
6 
7 
8 
9

Call-return dependency
Dataflow dependency
Heap dependency

[Main, DBHandler/1]

[Main, DBHandler/1]

[Main, DBHandler/2]

[Main, DBHandler/1]

[Main, DBHandler/2]

[Φ, Main]
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Our System - Step 2

42

Context Snapshots
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Context-sensitive Analysis

43

void main(Object[] args) { 
  A a1 = new A(); 
  Object v1 = a1.foo(new Object()); 

  A a2 = new A(); 
  Object v2 = a2.foo(new Object()); 
}

1 
2 
3 
4 
5 
6 
7

1 
2 
3 
4 
5 
6

class A { 
  Object foo(Object v) { 
    B b = new B(); 
    return b.bar(v); 
  } 
}

1 
2 
3 
4 
5 
6

class B { 
  Object bar(Object v) { 
    . . . 
  } 
}

main()

A.foo() A.foo()

B.bar()

[Φ, A/1] [Φ, A/2]

[A/1, B/1] [A/2, B/1]

Context-sensitive Analysis

B.bar()

[Φ, Φ]
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Context Snapshots

44

The context-sensitive PDG is a 
superposition of all possible 
contexts. 

At any time, A.foo() and 
B.bar() can exist in any one 
context but not both 
simultaneously.

main()

A.foo() A.foo()

B.bar()

[Φ, A/1] [Φ, A/2]

[A/1, B/1] [A/2, B/1]

B.bar()

[Φ, Φ]
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main()

A.foo() A.foo()

B.bar()

[Φ, A/1] [Φ, A/2]

[A/1, B/1] [A/2, B/1]

B.bar()

[Φ, Φ]

main()

A.foo() A.foo()

B.bar()

[Φ, A/1] [Φ, A/2]

[A/1, B/1] [A/2, B/1]
B.bar()

[Φ, Φ]

main()

A.foo() A.foo()

B.bar()

[Φ, A/1] [Φ, A/2]

[A/1, B/1] [A/2, B/1]
B.bar()

[Φ, Φ]

Context Snapshots
1

2

n
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Transactional Snapshot

Class 1 Class 2

Database 1

Class 3
Class 5

Class 7 Class 6

Database 2

Class 1 Class 2

Database 1

Class 3
Class 5

Class 7 Class 6

Database 2

46

Transactional 

Snapshots
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Our System - Step 3

47

Label propagation is an algorithm to detect 
communities of nodes in a graph

Context-sensitive Label Propagation
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Label Propagation Algorithm

48

Initial State We start with some initial assignment of labels to nodes

Magenta and Blue are the two categories of label
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Label Propagation Algorithm

49

Initial State We start with some initial assignment of labels to nodes

Magenta and Blue are the two categories of label

a) Random (unsupervised) 

b) From the output of another algorithm (semi-supervised)
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Label Propagation Algorithm

50

Pass 1 Each node is assigned the majority label of its neighbors
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Label Propagation Algorithm
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Final Repeat until convergence (no more node updates)
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Context-sensitive Label Propagation

52

LPA

LPA LPA LPA…

…

Label Propagation on 
Transactional Snapshot Label Propagation on 

Context Snapshots
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Context-sensitive Label Propagation
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LPA

LPA LPA LPA…

…

Label Propagation on 
Transactional Snapshot Label Propagation on 

Context Snapshots
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Context-sensitive Label Propagation

Initialize labels
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Context-sensitive Label Propagation

Transactional Snapshot
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Context-sensitive Label Propagation

Propagate Labels



IBM Research 57

Context-sensitive Label Propagation

Context Snapshot 1



IBM Research 58

Context-sensitive Label Propagation

Propagate Labels
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Context-sensitive Label Propagation

Context Snapshot 2
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Context-sensitive Label Propagation

Propagate Labels
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Context-sensitive Label Propagation

And so on for all context snapshots
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Our System - Overview

62
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Our System - Overview
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Our System - Overview

64

LPA

LPA LPA LPA…

…
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Evaluation Setup - Benchmark Applications

65

Application Description Java Framework # Classes # SQL 
Tables

Daytrader Trading application Java EE 8, Websphere 109 6

Plants Online plant shopping Java EE 7, Websphere 33 .

AcmeAir Website of a fictitious airline Openliberty, 
Websphere eXtreme 

66 .

JPetStore Online pet supply store Spring, Springboot 37 .

Proprietary1 Proprietary app . 82 .
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Evaluation Setup - Benchmark Applications

67

Application Description Java Framework # Classes # SQL 
Tables

Daytrader Trading application Java EE 8, Websphere 109 6

Plants Online plant shopping Java EE 7, Websphere 33 .

AcmeAir Website of a fictitious airline Openliberty, 
Websphere eXtreme 

66 .

JPetStore Online pet supply store Spring, Springboot 37 .

Proprietary1 Proprietary app . 82 .



IBM Research

Evaluation Setup - Benchmark Applications
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Application Description Java Framework # Classes # SQL 
Tables

Daytrader Trading application Java EE 8, Websphere 109 6
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66 .
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Evaluation Setup - Baseline Approaches

69

Approach Summary

Mono2Micro* Dynamic call traces and hierarchical clustering.

CoGCN A Graph Neural Network and K-Means on a static call graph

FoSCI Genetic Search-based algorithm on dynamic execution traces

MEM A Minimum-Spanning Tree based Clustering Algorithm on a graph. 
Edit-history and semantics are used to define coupling

* Enterprise scale decomposition tool
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Evaluation Setup - “refining” partitions

70

Original Approach Refined with CARGO

Mono2Micro Mono2Micro++

CoGCN CoGCN++

FoSCI FoSCI++

MEM MEM++

CARGO can be used to refine the 
partitions produced by other 
approaches. 

Denoted by “++” suffix. 

E.g., Mono2Micro++ denotes 
running CARGO with initial 
partition labels produced by 
Mono2Micro.
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Research Questions

71

RQ-1  Effectiveness in remediating distributed transactions 

 RQ-2  Latency and Throughput improvements resulting from  
refined microservice partitions

RQ-3  Quality of microservice partition architectural metrics
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Research Questions
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RQ-1  Effectiveness in remediating distributed transactions 

 RQ-2  Latency and Throughput improvements resulting from  
refined microservice partitions

RQ-3  Quality of microservice partition architectural metrics
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RQ-1  Distributed database transactions 

73

To minimize distributed transactions, we would like, to the extent possible, for 
each database table to be accessed from one microservice partition only 
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RQ-1  Distributed database transactions 

74

Evaluation
Use Transactional Purity (TXP) to measure the tendency of a database table to be 
accessed by multiple microservices

To minimize distributed transactions, we would like, to the extent possible, for 
each database table to be accessed from one microservice partition only 
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Use Transactional Purity (TXP) to measure the tendency of a database table to be 
accessed by multiple microservices

RQ-1  Distributed database transactions 

75

TXP = 1 −
K

∑
i=0

pi ⋅ log [ 1
pi ]

Evaluation

To minimize distributed transactions, we would like, to the extent possible, for 
each database table to be accessed from one microservice partition only 
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Use Transactional Purity (TXP) to measure the tendency of a database table to be 
accessed by multiple microservices

RQ-1  Distributed database transactions 

76

Lower purity indicates accesses from more microservices 
Higher purity indicates accesses from less microservices

TXP = 1 −
K

∑
i=0

pi ⋅ log [ 1
pi ]

Entropy

Evaluation

To minimize distributed transactions, we would like, to the extent possible, for 
each database table to be accessed from one microservice partition only 
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RQ-1  Distributed database transactions 

77

• For each of the 4 baselines, the refined 
partitions have higher transactional purity.  

• FoSCI++ and MEM++ have transactional 
purity of 1.0, (i.e., no distributed 
transactions after repartitioning). 

• CARGO (unsupervised) natively achieves 
transactional purity of 1.0

Summary
m

2m

m
2m

++

co
gc

n

co
gc

n+
+

Fo
SC

I

Fo
SC

I+
+

M
EM

CA
RG

O

M
EM

++
0

0.2

0.4

0.6

1.0

0.8

Daytrader

++ implies refinement with CARGO
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Research Questions
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RQ-1  Effectiveness in remediating distributed transactions 

 RQ-2  Latency and Throughput improvements resulting from  
refined microservice partitions

RQ-3  Quality of microservice partition architectural metrics
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RQ-2  Runtime Performance Improvements

79

Evaluation

Deploy two variants of the applications: 
1. Application with original partitioning (Mono2Micro) 1 
2. Application with partitions refined with CARGO (aka. Mono2Micro++) 2

Minimizing distributed transactions can offer significant runtime benefits in 
terms of reduced latency and improved throughput.

1 https://github.com/vikramnitin9/tackle-data-gravity-insights/tree/main/RQ2/daytrader_apps/daytrader_cargo 
2 https://github.com/vikramnitin9/tackle-data-gravity-insights/tree/main/RQ2/daytrader_apps/daytrader_mono2micro 

https://github.com/vikramnitin9/tackle-data-gravity-insights/tree/main/RQ2/daytrader_apps/daytrader_cargo
https://github.com/vikramnitin9/tackle-data-gravity-insights/tree/main/RQ2/daytrader_apps/daytrader_mono2micro
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Evaluation

Deploy two variants of the applications: 
1. Application with original partitioning (Mono2Micro) 1 
2. Application with partitions refined with CARGO (aka. Mono2Micro++) 2 

Compare two runtime performance metrics: 
 Latency: Time between reception and completion of a request (milliseconds) 
Throughput: Number of successful requests honored per unit time (requests/second) 

Minimizing distributed transactions can offer significant runtime benefits in 
terms of reduced latency and improved throughput.

1 https://github.com/vikramnitin9/tackle-data-gravity-insights/tree/main/RQ2/daytrader_apps/daytrader_cargo 
2 https://github.com/vikramnitin9/tackle-data-gravity-insights/tree/main/RQ2/daytrader_apps/daytrader_mono2micro 

https://github.com/vikramnitin9/tackle-data-gravity-insights/tree/main/RQ2/daytrader_apps/daytrader_cargo
https://github.com/vikramnitin9/tackle-data-gravity-insights/tree/main/RQ2/daytrader_apps/daytrader_mono2micro
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Significant improvements in latency and throughput. Repartitioned application has 11% lower latency 
and 120% higher throughput on average across use cases compare to the original applications.
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RQ-1  Effectiveness in remediating distributed transactions 

 RQ-2  Latency and Throughput improvements resulting from  
refined microservice partitions

RQ-3  Quality of microservice partition architectural metrics
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METRIC DESCRIPTION

Coupling ▽ Average Coupling among partitions

Cohesion △ Average cohesion within a partition

BCP ▽ Purity of Business use cases per partition.

ICP ▽ Inter-partition call volume

▽ Lower is better △ Higher is better
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MONO2MICRO MONO2MICRO++ CARGO

DAYTRADER 0.78 0.02 0.01

PLANTS 0.31 0.04 0.05

ACMEAIR 0.58 0.04 0.03

JPETSTORE 0.77 0.03 0.03

PROPRIETARY 0.42 0.03 0.04

WIN/TIE/LOSS 5/0/0

COGCN COGCN++ CARGO

DAYTRADER 0.37 0.61 0.71

PLANTS 0.39 0.46 0.6*

ACMEAIR 0.21 0.32 0.96

JPETSTORE 0.20 0.24 0.94

PROPRIETARY 0.69 0.73 0.75*

WIN/TIE/LOSS 5/0/0

*Mono2Micro++ performs 
slightly better than CARGO

Coupling ▽ Cohesion △ 

CARGO improves the partitioning quality (reduced coupling and increased 
cohesion) of other approaches and works equally well in unsupervised mode.
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MONO2MICRO MONO2MICRO++ CARGO

DAYTRADER 2.31 2.57 1.31

PLANTS 1.68 2.20 1.79

ACMEAIR 1.29 1.48 1.75

JPETSTORE 2.25 2.35 2.87

PROPRIETARY 1.53 1.23 1.55

WIN/TIE/LOSS 0/0/5

BCP ▽ 

CARGO performs poorly on BCP. The definition of BCP depends heavily on the quality of the generated 
business use cases, which Mono2Micro has access to but we do not.
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Summary

1. Partitioning monolithic code can be challenging 

2. Existing automated approaches miss key code and/or transactional dependencies 

3. We present CARGO, which uses (a) precise static analysis, (b) explicit modeling of 
database transactions, and (c) a novel community detection algorithm
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Summary

1. Partitioning monolithic code can be challenging 

2. Existing automated approaches miss key code and/or transactional dependencies 

3. We present CARGO, which uses (a) precise static analysis, (b) explicit modeling of 
database transactions, and (c) a novel community detection algorithm 

4. Compared to existing approaches, CARGO (a) reduces distributed transactions, 
(b) achieves better latency and throughput, (c) achieves better performance on 
architectural metrics
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Future Directions

• Sometimes, it is not possible to avoid distributed transactions. In that case, 
we need mechanism to automatically refactor database transactions into 
distributed patterns like SAGA. 

• Once we identify partitions, there is still a lot of work to implement these 
partitions. 

• Identify best mechanism for Inter-Process Communication (IPC), e.g., sync 
vs async 

• Automatically generate IPC code
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Thank You!
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https://arxiv.org/abs/2207.11784

https://arxiv.org/abs/2207.11784

